MakeItFrom.com
Menu (ESC)

EN 1.4005 Stainless Steel vs. C43500 Brass

EN 1.4005 stainless steel belongs to the iron alloys classification, while C43500 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4005 stainless steel and the bottom bar is C43500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 13 to 21
8.5 to 46
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
42
Shear Strength, MPa 390 to 450
220 to 310
Tensile Strength: Ultimate (UTS), MPa 630 to 750
320 to 530
Tensile Strength: Yield (Proof), MPa 370 to 500
120 to 480

Thermal Properties

Latent Heat of Fusion, J/g 270
190
Maximum Temperature: Mechanical, °C 760
160
Melting Completion (Liquidus), °C 1440
1000
Melting Onset (Solidus), °C 1400
970
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 30
120
Thermal Expansion, µm/m-K 10
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
28
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
30

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
28
Density, g/cm3 7.7
8.5
Embodied Carbon, kg CO2/kg material 2.0
2.7
Embodied Energy, MJ/kg 28
45
Embodied Water, L/kg 100
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90 to 110
44 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 350 to 650
65 to 1040
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 23 to 27
10 to 17
Strength to Weight: Bending, points 21 to 24
12 to 17
Thermal Diffusivity, mm2/s 8.1
37
Thermal Shock Resistance, points 23 to 27
11 to 18

Alloy Composition

Carbon (C), % 0.060 to 0.15
0
Chromium (Cr), % 12 to 14
0
Copper (Cu), % 0
79 to 83
Iron (Fe), % 82.4 to 87.8
0 to 0.050
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 0 to 0.6
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0.15 to 0.35
0
Tin (Sn), % 0
0.6 to 1.2
Zinc (Zn), % 0
15.4 to 20.4
Residuals, % 0
0 to 0.3