MakeItFrom.com
Menu (ESC)

EN 1.4005 Stainless Steel vs. C90800 Bronze

EN 1.4005 stainless steel belongs to the iron alloys classification, while C90800 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4005 stainless steel and the bottom bar is C90800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 13 to 21
13
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
40
Tensile Strength: Ultimate (UTS), MPa 630 to 750
330
Tensile Strength: Yield (Proof), MPa 370 to 500
170

Thermal Properties

Latent Heat of Fusion, J/g 270
190
Maximum Temperature: Mechanical, °C 760
170
Melting Completion (Liquidus), °C 1440
990
Melting Onset (Solidus), °C 1400
870
Specific Heat Capacity, J/kg-K 480
370
Thermal Conductivity, W/m-K 30
68
Thermal Expansion, µm/m-K 10
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
11
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
11

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
36
Density, g/cm3 7.7
8.7
Embodied Carbon, kg CO2/kg material 2.0
3.8
Embodied Energy, MJ/kg 28
62
Embodied Water, L/kg 100
410

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90 to 110
35
Resilience: Unit (Modulus of Resilience), kJ/m3 350 to 650
140
Stiffness to Weight: Axial, points 14
6.9
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 23 to 27
11
Strength to Weight: Bending, points 21 to 24
12
Thermal Diffusivity, mm2/s 8.1
21
Thermal Shock Resistance, points 23 to 27
12

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0.060 to 0.15
0
Chromium (Cr), % 12 to 14
0
Copper (Cu), % 0
85.3 to 89
Iron (Fe), % 82.4 to 87.8
0 to 0.15
Lead (Pb), % 0
0 to 0.25
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 0 to 0.6
0
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0 to 0.040
0 to 0.3
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0.15 to 0.35
0 to 0.050
Tin (Sn), % 0
11 to 13
Zinc (Zn), % 0
0 to 0.25