MakeItFrom.com
Menu (ESC)

EN 1.4006 Stainless Steel vs. EN 1.4035 Stainless Steel

Both EN 1.4006 stainless steel and EN 1.4035 stainless steel are iron alloys. They have a very high 98% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4006 stainless steel and the bottom bar is EN 1.4035 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 16 to 23
18
Fatigue Strength, MPa 150 to 300
250
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
76
Shear Strength, MPa 370 to 460
430
Tensile Strength: Ultimate (UTS), MPa 590 to 750
690
Tensile Strength: Yield (Proof), MPa 230 to 510
400

Thermal Properties

Latent Heat of Fusion, J/g 270
270
Maximum Temperature: Corrosion, °C 390
380
Maximum Temperature: Mechanical, °C 740
760
Melting Completion (Liquidus), °C 1440
1430
Melting Onset (Solidus), °C 1400
1390
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 30
29
Thermal Expansion, µm/m-K 11
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
3.5

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
7.0
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 1.9
2.0
Embodied Energy, MJ/kg 27
27
Embodied Water, L/kg 100
100

Common Calculations

PREN (Pitting Resistance) 13
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 99 to 110
110
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 660
420
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21 to 27
25
Strength to Weight: Bending, points 20 to 24
22
Thermal Diffusivity, mm2/s 8.1
7.8
Thermal Shock Resistance, points 21 to 26
25

Alloy Composition

Carbon (C), % 0.080 to 0.15
0.43 to 0.5
Chromium (Cr), % 11.5 to 13.5
12.5 to 14
Iron (Fe), % 83.1 to 88.4
82.1 to 86.9
Manganese (Mn), % 0 to 1.5
0 to 2.0
Nickel (Ni), % 0 to 0.75
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0.15 to 0.35