MakeItFrom.com
Menu (ESC)

EN 1.4006 Stainless Steel vs. EN 1.4615 Stainless Steel

Both EN 1.4006 stainless steel and EN 1.4615 stainless steel are iron alloys. They have 82% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4006 stainless steel and the bottom bar is EN 1.4615 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 16 to 23
50
Fatigue Strength, MPa 150 to 300
190
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
76
Shear Strength, MPa 370 to 460
360
Tensile Strength: Ultimate (UTS), MPa 590 to 750
500
Tensile Strength: Yield (Proof), MPa 230 to 510
200

Thermal Properties

Latent Heat of Fusion, J/g 270
280
Maximum Temperature: Corrosion, °C 390
400
Maximum Temperature: Mechanical, °C 740
840
Melting Completion (Liquidus), °C 1440
1400
Melting Onset (Solidus), °C 1400
1360
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 30
15
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
13
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 1.9
2.8
Embodied Energy, MJ/kg 27
40
Embodied Water, L/kg 100
140

Common Calculations

PREN (Pitting Resistance) 13
17
Resilience: Ultimate (Unit Rupture Work), MJ/m3 99 to 110
200
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 660
99
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21 to 27
18
Strength to Weight: Bending, points 20 to 24
18
Thermal Diffusivity, mm2/s 8.1
4.1
Thermal Shock Resistance, points 21 to 26
11

Alloy Composition

Carbon (C), % 0.080 to 0.15
0 to 0.030
Chromium (Cr), % 11.5 to 13.5
14 to 16
Copper (Cu), % 0
2.0 to 4.0
Iron (Fe), % 83.1 to 88.4
63.1 to 72.5
Manganese (Mn), % 0 to 1.5
7.0 to 9.0
Molybdenum (Mo), % 0
0 to 0.8
Nickel (Ni), % 0 to 0.75
4.5 to 6.0
Nitrogen (N), % 0
0.020 to 0.060
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.010