EN 1.4006 Stainless Steel vs. EN 1.4618 Stainless Steel
Both EN 1.4006 stainless steel and EN 1.4618 stainless steel are iron alloys. They have 82% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.
For each property being compared, the top bar is EN 1.4006 stainless steel and the bottom bar is EN 1.4618 stainless steel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
200 |
Elongation at Break, % | 16 to 23 | |
51 |
Fatigue Strength, MPa | 150 to 300 | |
240 to 250 |
Poisson's Ratio | 0.28 | |
0.28 |
Shear Modulus, GPa | 76 | |
77 |
Shear Strength, MPa | 370 to 460 | |
480 to 500 |
Tensile Strength: Ultimate (UTS), MPa | 590 to 750 | |
680 to 700 |
Tensile Strength: Yield (Proof), MPa | 230 to 510 | |
250 to 260 |
Thermal Properties
Latent Heat of Fusion, J/g | 270 | |
280 |
Maximum Temperature: Corrosion, °C | 390 | |
410 |
Maximum Temperature: Mechanical, °C | 740 | |
900 |
Melting Completion (Liquidus), °C | 1440 | |
1400 |
Melting Onset (Solidus), °C | 1400 | |
1360 |
Specific Heat Capacity, J/kg-K | 480 | |
480 |
Thermal Conductivity, W/m-K | 30 | |
15 |
Thermal Expansion, µm/m-K | 11 | |
16 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 2.9 | |
2.4 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 3.3 | |
2.7 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 7.0 | |
13 |
Density, g/cm3 | 7.7 | |
7.7 |
Embodied Carbon, kg CO2/kg material | 1.9 | |
2.7 |
Embodied Energy, MJ/kg | 27 | |
39 |
Embodied Water, L/kg | 100 | |
150 |
Common Calculations
PREN (Pitting Resistance) | 13 | |
19 |
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 99 to 110 | |
270 to 280 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 140 to 660 | |
160 to 170 |
Stiffness to Weight: Axial, points | 14 | |
14 |
Stiffness to Weight: Bending, points | 25 | |
25 |
Strength to Weight: Axial, points | 21 to 27 | |
24 to 25 |
Strength to Weight: Bending, points | 20 to 24 | |
22 to 23 |
Thermal Diffusivity, mm2/s | 8.1 | |
4.0 |
Thermal Shock Resistance, points | 21 to 26 | |
15 to 16 |
Alloy Composition
Carbon (C), % | 0.080 to 0.15 | |
0 to 0.1 |
Chromium (Cr), % | 11.5 to 13.5 | |
16.5 to 18.5 |
Copper (Cu), % | 0 | |
1.0 to 2.5 |
Iron (Fe), % | 83.1 to 88.4 | |
62.7 to 72.5 |
Manganese (Mn), % | 0 to 1.5 | |
5.5 to 9.5 |
Nickel (Ni), % | 0 to 0.75 | |
4.5 to 5.5 |
Nitrogen (N), % | 0 | |
0 to 0.15 |
Phosphorus (P), % | 0 to 0.040 | |
0 to 0.070 |
Silicon (Si), % | 0 to 1.0 | |
0 to 1.0 |
Sulfur (S), % | 0 to 0.015 | |
0 to 0.010 |