MakeItFrom.com
Menu (ESC)

EN 1.4006 Stainless Steel vs. C69400 Brass

EN 1.4006 stainless steel belongs to the iron alloys classification, while C69400 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4006 stainless steel and the bottom bar is C69400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 16 to 23
17
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
42
Shear Strength, MPa 370 to 460
350
Tensile Strength: Ultimate (UTS), MPa 590 to 750
570
Tensile Strength: Yield (Proof), MPa 230 to 510
270

Thermal Properties

Latent Heat of Fusion, J/g 270
260
Maximum Temperature: Mechanical, °C 740
170
Melting Completion (Liquidus), °C 1440
920
Melting Onset (Solidus), °C 1400
820
Specific Heat Capacity, J/kg-K 480
410
Thermal Conductivity, W/m-K 30
26
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
6.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
6.7

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
27
Density, g/cm3 7.7
8.3
Embodied Carbon, kg CO2/kg material 1.9
2.7
Embodied Energy, MJ/kg 27
44
Embodied Water, L/kg 100
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99 to 110
80
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 660
340
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 21 to 27
19
Strength to Weight: Bending, points 20 to 24
18
Thermal Diffusivity, mm2/s 8.1
7.7
Thermal Shock Resistance, points 21 to 26
20

Alloy Composition

Carbon (C), % 0.080 to 0.15
0
Chromium (Cr), % 11.5 to 13.5
0
Copper (Cu), % 0
80 to 83
Iron (Fe), % 83.1 to 88.4
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 0 to 0.75
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
3.5 to 4.5
Sulfur (S), % 0 to 0.015
0
Zinc (Zn), % 0
11.5 to 16.5
Residuals, % 0
0 to 0.5