MakeItFrom.com
Menu (ESC)

EN 1.4006 Stainless Steel vs. C70700 Copper-nickel

EN 1.4006 stainless steel belongs to the iron alloys classification, while C70700 copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4006 stainless steel and the bottom bar is C70700 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 16 to 23
39
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
46
Shear Strength, MPa 370 to 460
220
Tensile Strength: Ultimate (UTS), MPa 590 to 750
320
Tensile Strength: Yield (Proof), MPa 230 to 510
110

Thermal Properties

Latent Heat of Fusion, J/g 270
220
Maximum Temperature: Mechanical, °C 740
220
Melting Completion (Liquidus), °C 1440
1120
Melting Onset (Solidus), °C 1400
1060
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 30
59
Thermal Expansion, µm/m-K 11
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
11
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
12

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
34
Density, g/cm3 7.7
8.9
Embodied Carbon, kg CO2/kg material 1.9
3.4
Embodied Energy, MJ/kg 27
52
Embodied Water, L/kg 100
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99 to 110
100
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 660
51
Stiffness to Weight: Axial, points 14
7.6
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 21 to 27
10
Strength to Weight: Bending, points 20 to 24
12
Thermal Diffusivity, mm2/s 8.1
17
Thermal Shock Resistance, points 21 to 26
12

Alloy Composition

Carbon (C), % 0.080 to 0.15
0
Chromium (Cr), % 11.5 to 13.5
0
Copper (Cu), % 0
88.5 to 90.5
Iron (Fe), % 83.1 to 88.4
0 to 0.050
Manganese (Mn), % 0 to 1.5
0 to 0.5
Nickel (Ni), % 0 to 0.75
9.5 to 10.5
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Residuals, % 0
0 to 0.5