MakeItFrom.com
Menu (ESC)

EN 1.4006 Stainless Steel vs. C86700 Bronze

EN 1.4006 stainless steel belongs to the iron alloys classification, while C86700 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4006 stainless steel and the bottom bar is C86700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 16 to 23
17
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 76
41
Tensile Strength: Ultimate (UTS), MPa 590 to 750
630
Tensile Strength: Yield (Proof), MPa 230 to 510
250

Thermal Properties

Latent Heat of Fusion, J/g 270
180
Maximum Temperature: Mechanical, °C 740
130
Melting Completion (Liquidus), °C 1440
880
Melting Onset (Solidus), °C 1400
860
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 30
89
Thermal Expansion, µm/m-K 11
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
17
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
19

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
23
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 1.9
2.9
Embodied Energy, MJ/kg 27
49
Embodied Water, L/kg 100
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99 to 110
86
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 660
290
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 21 to 27
22
Strength to Weight: Bending, points 20 to 24
21
Thermal Diffusivity, mm2/s 8.1
28
Thermal Shock Resistance, points 21 to 26
21

Alloy Composition

Aluminum (Al), % 0
1.0 to 3.0
Carbon (C), % 0.080 to 0.15
0
Chromium (Cr), % 11.5 to 13.5
0
Copper (Cu), % 0
55 to 60
Iron (Fe), % 83.1 to 88.4
1.0 to 3.0
Lead (Pb), % 0
0.5 to 1.5
Manganese (Mn), % 0 to 1.5
1.0 to 3.5
Nickel (Ni), % 0 to 0.75
0 to 1.0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 1.5
Zinc (Zn), % 0
30 to 38
Residuals, % 0
0 to 1.0