MakeItFrom.com
Menu (ESC)

EN 1.4006 Stainless Steel vs. C90700 Bronze

EN 1.4006 stainless steel belongs to the iron alloys classification, while C90700 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4006 stainless steel and the bottom bar is C90700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 16 to 23
12
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
40
Tensile Strength: Ultimate (UTS), MPa 590 to 750
330
Tensile Strength: Yield (Proof), MPa 230 to 510
180

Thermal Properties

Latent Heat of Fusion, J/g 270
190
Maximum Temperature: Mechanical, °C 740
170
Melting Completion (Liquidus), °C 1440
1000
Melting Onset (Solidus), °C 1400
830
Specific Heat Capacity, J/kg-K 480
370
Thermal Conductivity, W/m-K 30
71
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
10
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
10

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
35
Density, g/cm3 7.7
8.7
Embodied Carbon, kg CO2/kg material 1.9
3.7
Embodied Energy, MJ/kg 27
60
Embodied Water, L/kg 100
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99 to 110
34
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 660
150
Stiffness to Weight: Axial, points 14
6.9
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 21 to 27
10
Strength to Weight: Bending, points 20 to 24
12
Thermal Diffusivity, mm2/s 8.1
22
Thermal Shock Resistance, points 21 to 26
12

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0.080 to 0.15
0
Chromium (Cr), % 11.5 to 13.5
0
Copper (Cu), % 0
88 to 90
Iron (Fe), % 83.1 to 88.4
0 to 0.15
Lead (Pb), % 0
0 to 0.5
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 0 to 0.75
0 to 0.5
Phosphorus (P), % 0 to 0.040
0 to 1.5
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.015
0 to 0.050
Tin (Sn), % 0
10 to 12
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.6