MakeItFrom.com
Menu (ESC)

EN 1.4006 Stainless Steel vs. S17400 Stainless Steel

Both EN 1.4006 stainless steel and S17400 stainless steel are iron alloys. They have 89% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4006 stainless steel and the bottom bar is S17400 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 16 to 23
11 to 21
Fatigue Strength, MPa 150 to 300
380 to 670
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
75
Shear Strength, MPa 370 to 460
570 to 830
Tensile Strength: Ultimate (UTS), MPa 590 to 750
910 to 1390
Tensile Strength: Yield (Proof), MPa 230 to 510
580 to 1250

Thermal Properties

Latent Heat of Fusion, J/g 270
280
Maximum Temperature: Corrosion, °C 390
450
Maximum Temperature: Mechanical, °C 740
850
Melting Completion (Liquidus), °C 1440
1440
Melting Onset (Solidus), °C 1400
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 30
17
Thermal Expansion, µm/m-K 11
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
14
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 1.9
2.7
Embodied Energy, MJ/kg 27
39
Embodied Water, L/kg 100
130

Common Calculations

PREN (Pitting Resistance) 13
16
Resilience: Ultimate (Unit Rupture Work), MJ/m3 99 to 110
140 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 660
880 to 4060
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21 to 27
32 to 49
Strength to Weight: Bending, points 20 to 24
27 to 35
Thermal Diffusivity, mm2/s 8.1
4.5
Thermal Shock Resistance, points 21 to 26
30 to 46

Alloy Composition

Carbon (C), % 0.080 to 0.15
0 to 0.070
Chromium (Cr), % 11.5 to 13.5
15 to 17
Copper (Cu), % 0
3.0 to 5.0
Iron (Fe), % 83.1 to 88.4
70.4 to 78.9
Manganese (Mn), % 0 to 1.5
0 to 1.0
Nickel (Ni), % 0 to 0.75
3.0 to 5.0
Niobium (Nb), % 0
0.15 to 0.45
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030

Comparable Variants