MakeItFrom.com
Menu (ESC)

EN 1.4008 Stainless Steel vs. 6182 Aluminum

EN 1.4008 stainless steel belongs to the iron alloys classification, while 6182 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4008 stainless steel and the bottom bar is 6182 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 17
6.8 to 13
Fatigue Strength, MPa 300
63 to 99
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Tensile Strength: Ultimate (UTS), MPa 670
230 to 320
Tensile Strength: Yield (Proof), MPa 500
130 to 270

Thermal Properties

Latent Heat of Fusion, J/g 280
410
Maximum Temperature: Mechanical, °C 760
190
Melting Completion (Liquidus), °C 1450
640
Melting Onset (Solidus), °C 1400
600
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 25
160
Thermal Expansion, µm/m-K 11
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
40
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
130

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 2.1
8.4
Embodied Energy, MJ/kg 30
150
Embodied Water, L/kg 100
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
21 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 630
110 to 520
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 24
23 to 32
Strength to Weight: Bending, points 22
30 to 38
Thermal Diffusivity, mm2/s 6.7
65
Thermal Shock Resistance, points 23
10 to 14

Alloy Composition

Aluminum (Al), % 0
95 to 97.9
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 12 to 13.5
0 to 0.25
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 81.8 to 86.8
0 to 0.5
Magnesium (Mg), % 0
0.7 to 1.2
Manganese (Mn), % 0 to 1.0
0.5 to 1.0
Molybdenum (Mo), % 0.2 to 0.5
0
Nickel (Ni), % 1.0 to 2.0
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
0.9 to 1.3
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.2
Zirconium (Zr), % 0
0.050 to 0.2
Residuals, % 0
0 to 0.15