MakeItFrom.com
Menu (ESC)

EN 1.4008 Stainless Steel vs. C72150 Copper-nickel

EN 1.4008 stainless steel belongs to the iron alloys classification, while C72150 copper-nickel belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4008 stainless steel and the bottom bar is C72150 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
150
Elongation at Break, % 17
29
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
55
Tensile Strength: Ultimate (UTS), MPa 670
490
Tensile Strength: Yield (Proof), MPa 500
210

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 760
600
Melting Completion (Liquidus), °C 1450
1210
Melting Onset (Solidus), °C 1400
1250
Specific Heat Capacity, J/kg-K 480
410
Thermal Conductivity, W/m-K 25
22
Thermal Expansion, µm/m-K 11
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
3.5
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
3.6

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
45
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 2.1
6.1
Embodied Energy, MJ/kg 30
88
Embodied Water, L/kg 100
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
120
Resilience: Unit (Modulus of Resilience), kJ/m3 630
150
Stiffness to Weight: Axial, points 14
9.1
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 24
15
Strength to Weight: Bending, points 22
15
Thermal Diffusivity, mm2/s 6.7
6.0
Thermal Shock Resistance, points 23
18

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.1
Chromium (Cr), % 12 to 13.5
0
Copper (Cu), % 0
52.5 to 57
Iron (Fe), % 81.8 to 86.8
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0 to 0.050
Molybdenum (Mo), % 0.2 to 0.5
0
Nickel (Ni), % 1.0 to 2.0
43 to 46
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.025
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.5