MakeItFrom.com
Menu (ESC)

EN 1.4008 Stainless Steel vs. C86200 Bronze

EN 1.4008 stainless steel belongs to the iron alloys classification, while C86200 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4008 stainless steel and the bottom bar is C86200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 17
21
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
42
Tensile Strength: Ultimate (UTS), MPa 670
710
Tensile Strength: Yield (Proof), MPa 500
350

Thermal Properties

Latent Heat of Fusion, J/g 280
190
Maximum Temperature: Mechanical, °C 760
160
Melting Completion (Liquidus), °C 1450
940
Melting Onset (Solidus), °C 1400
900
Specific Heat Capacity, J/kg-K 480
410
Thermal Conductivity, W/m-K 25
35
Thermal Expansion, µm/m-K 11
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
9.0

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
23
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 2.1
2.9
Embodied Energy, MJ/kg 30
49
Embodied Water, L/kg 100
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
120
Resilience: Unit (Modulus of Resilience), kJ/m3 630
540
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 24
25
Strength to Weight: Bending, points 22
22
Thermal Diffusivity, mm2/s 6.7
11
Thermal Shock Resistance, points 23
23

Alloy Composition

Aluminum (Al), % 0
3.0 to 4.9
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 12 to 13.5
0
Copper (Cu), % 0
60 to 66
Iron (Fe), % 81.8 to 86.8
2.0 to 4.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 1.0
2.5 to 5.0
Molybdenum (Mo), % 0.2 to 0.5
0
Nickel (Ni), % 1.0 to 2.0
0 to 1.0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
22 to 28
Residuals, % 0
0 to 1.0