MakeItFrom.com
Menu (ESC)

EN 1.4008 Stainless Steel vs. C93500 Bronze

EN 1.4008 stainless steel belongs to the iron alloys classification, while C93500 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4008 stainless steel and the bottom bar is C93500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 17
15
Poisson's Ratio 0.28
0.35
Shear Modulus, GPa 76
38
Tensile Strength: Ultimate (UTS), MPa 670
220
Tensile Strength: Yield (Proof), MPa 500
110

Thermal Properties

Latent Heat of Fusion, J/g 280
180
Maximum Temperature: Mechanical, °C 760
160
Melting Completion (Liquidus), °C 1450
1000
Melting Onset (Solidus), °C 1400
850
Specific Heat Capacity, J/kg-K 480
360
Thermal Conductivity, W/m-K 25
70
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
15
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
15

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
31
Density, g/cm3 7.8
9.0
Embodied Carbon, kg CO2/kg material 2.1
3.0
Embodied Energy, MJ/kg 30
49
Embodied Water, L/kg 100
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
28
Resilience: Unit (Modulus of Resilience), kJ/m3 630
59
Stiffness to Weight: Axial, points 14
6.3
Stiffness to Weight: Bending, points 25
17
Strength to Weight: Axial, points 24
6.9
Strength to Weight: Bending, points 22
9.1
Thermal Diffusivity, mm2/s 6.7
22
Thermal Shock Resistance, points 23
8.5

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.3
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 12 to 13.5
0
Copper (Cu), % 0
83 to 86
Iron (Fe), % 81.8 to 86.8
0 to 0.2
Lead (Pb), % 0
8.0 to 10
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0.2 to 0.5
0
Nickel (Ni), % 1.0 to 2.0
0 to 1.0
Phosphorus (P), % 0 to 0.035
0 to 1.5
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.025
0 to 0.080
Tin (Sn), % 0
4.3 to 6.0
Zinc (Zn), % 0
0 to 2.0
Residuals, % 0
0 to 1.0