MakeItFrom.com
Menu (ESC)

EN 1.4017 Stainless Steel vs. 4004 Aluminum

EN 1.4017 stainless steel belongs to the iron alloys classification, while 4004 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4017 stainless steel and the bottom bar is 4004 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 14
2.4
Fatigue Strength, MPa 220
42
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
27
Shear Strength, MPa 350
63
Tensile Strength: Ultimate (UTS), MPa 580
110
Tensile Strength: Yield (Proof), MPa 390
60

Thermal Properties

Latent Heat of Fusion, J/g 280
540
Maximum Temperature: Mechanical, °C 870
160
Melting Completion (Liquidus), °C 1440
600
Melting Onset (Solidus), °C 1390
560
Specific Heat Capacity, J/kg-K 480
910
Thermal Conductivity, W/m-K 30
130
Thermal Expansion, µm/m-K 10
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
33
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 7.7
2.6
Embodied Carbon, kg CO2/kg material 2.2
8.0
Embodied Energy, MJ/kg 31
150
Embodied Water, L/kg 120
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 380
25
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
54
Strength to Weight: Axial, points 21
12
Strength to Weight: Bending, points 20
20
Thermal Diffusivity, mm2/s 8.1
58
Thermal Shock Resistance, points 20
5.1

Alloy Composition

Aluminum (Al), % 0
86 to 90
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 78.3 to 82.8
0 to 0.8
Magnesium (Mg), % 0
1.0 to 2.0
Manganese (Mn), % 0 to 1.0
0 to 0.1
Nickel (Ni), % 1.2 to 1.6
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
9.0 to 10.5
Sulfur (S), % 0 to 0.015
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15