MakeItFrom.com
Menu (ESC)

EN 1.4017 Stainless Steel vs. AISI 348H Stainless Steel

Both EN 1.4017 stainless steel and AISI 348H stainless steel are iron alloys. Both are furnished in the annealed condition. They have 88% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4017 stainless steel and the bottom bar is AISI 348H stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 14
40
Fatigue Strength, MPa 220
200
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
77
Shear Strength, MPa 350
400
Tensile Strength: Ultimate (UTS), MPa 580
580
Tensile Strength: Yield (Proof), MPa 390
230

Thermal Properties

Latent Heat of Fusion, J/g 280
290
Maximum Temperature: Corrosion, °C 410
500
Maximum Temperature: Mechanical, °C 870
940
Melting Completion (Liquidus), °C 1440
1430
Melting Onset (Solidus), °C 1390
1390
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 30
15
Thermal Expansion, µm/m-K 10
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
20
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.2
3.9
Embodied Energy, MJ/kg 31
56
Embodied Water, L/kg 120
150

Common Calculations

PREN (Pitting Resistance) 17
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 71
190
Resilience: Unit (Modulus of Resilience), kJ/m3 380
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
21
Strength to Weight: Bending, points 20
20
Thermal Diffusivity, mm2/s 8.1
4.1
Thermal Shock Resistance, points 20
13

Alloy Composition

Carbon (C), % 0 to 0.080
0.040 to 0.1
Chromium (Cr), % 16 to 18
17 to 19
Cobalt (Co), % 0
0 to 0.2
Iron (Fe), % 78.3 to 82.8
63.8 to 73.6
Manganese (Mn), % 0 to 1.0
0 to 2.0
Nickel (Ni), % 1.2 to 1.6
9.0 to 13
Niobium (Nb), % 0
0.32 to 1.0
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 0.75
Sulfur (S), % 0 to 0.015
0 to 0.030
Tantalum (Ta), % 0
0 to 0.1