MakeItFrom.com
Menu (ESC)

EN 1.4020 Stainless Steel vs. 2024 Aluminum

EN 1.4020 stainless steel belongs to the iron alloys classification, while 2024 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4020 stainless steel and the bottom bar is 2024 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 13 to 34
4.0 to 16
Fatigue Strength, MPa 340 to 540
90 to 180
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
27
Shear Strength, MPa 510 to 680
130 to 320
Tensile Strength: Ultimate (UTS), MPa 770 to 1130
200 to 540
Tensile Strength: Yield (Proof), MPa 430 to 950
100 to 490

Thermal Properties

Latent Heat of Fusion, J/g 280
390
Maximum Temperature: Mechanical, °C 890
200
Melting Completion (Liquidus), °C 1390
640
Melting Onset (Solidus), °C 1350
500
Specific Heat Capacity, J/kg-K 480
880
Thermal Expansion, µm/m-K 17
23

Otherwise Unclassified Properties

Base Metal Price, % relative 11
11
Density, g/cm3 7.6
3.0
Embodied Carbon, kg CO2/kg material 2.5
8.3
Embodied Energy, MJ/kg 37
150
Embodied Water, L/kg 150
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 220
20 to 68
Resilience: Unit (Modulus of Resilience), kJ/m3 460 to 2290
70 to 1680
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 28 to 41
18 to 50
Strength to Weight: Bending, points 25 to 32
25 to 49
Thermal Shock Resistance, points 16 to 23
8.6 to 24

Alloy Composition

Aluminum (Al), % 0
90.7 to 94.7
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 16.5 to 19
0 to 0.1
Copper (Cu), % 0
3.8 to 4.9
Iron (Fe), % 62.8 to 71.8
0 to 0.5
Magnesium (Mg), % 0
1.2 to 1.8
Manganese (Mn), % 11 to 14
0.3 to 0.9
Nickel (Ni), % 0.5 to 2.5
0
Nitrogen (N), % 0.2 to 0.45
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.15