MakeItFrom.com
Menu (ESC)

EN 1.4020 Stainless Steel vs. 705.0 Aluminum

EN 1.4020 stainless steel belongs to the iron alloys classification, while 705.0 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4020 stainless steel and the bottom bar is 705.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 340
62 to 65
Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 13 to 34
8.4 to 10
Fatigue Strength, MPa 340 to 540
63 to 98
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Tensile Strength: Ultimate (UTS), MPa 770 to 1130
240 to 260
Tensile Strength: Yield (Proof), MPa 430 to 950
130

Thermal Properties

Latent Heat of Fusion, J/g 280
390
Maximum Temperature: Mechanical, °C 890
180
Melting Completion (Liquidus), °C 1390
640
Melting Onset (Solidus), °C 1350
610
Specific Heat Capacity, J/kg-K 480
890
Thermal Expansion, µm/m-K 17
24

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 7.6
2.8
Embodied Carbon, kg CO2/kg material 2.5
8.4
Embodied Energy, MJ/kg 37
150
Embodied Water, L/kg 150
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 220
18 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 460 to 2290
120 to 130
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
49
Strength to Weight: Axial, points 28 to 41
24 to 26
Strength to Weight: Bending, points 25 to 32
31 to 32
Thermal Shock Resistance, points 16 to 23
11

Alloy Composition

Aluminum (Al), % 0
92.3 to 98.6
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 16.5 to 19
0 to 0.4
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 62.8 to 71.8
0 to 0.8
Magnesium (Mg), % 0
1.4 to 1.8
Manganese (Mn), % 11 to 14
0 to 0.6
Nickel (Ni), % 0.5 to 2.5
0
Nitrogen (N), % 0.2 to 0.45
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0 to 0.2
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 3.3
Residuals, % 0
0 to 0.15