MakeItFrom.com
Menu (ESC)

EN 1.4020 Stainless Steel vs. EN AC-45100 Aluminum

EN 1.4020 stainless steel belongs to the iron alloys classification, while EN AC-45100 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4020 stainless steel and the bottom bar is EN AC-45100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 340
97 to 130
Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 13 to 34
1.0 to 2.8
Fatigue Strength, MPa 340 to 540
82 to 99
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
27
Tensile Strength: Ultimate (UTS), MPa 770 to 1130
300 to 360
Tensile Strength: Yield (Proof), MPa 430 to 950
210 to 320

Thermal Properties

Latent Heat of Fusion, J/g 280
470
Maximum Temperature: Mechanical, °C 890
170
Melting Completion (Liquidus), °C 1390
630
Melting Onset (Solidus), °C 1350
550
Specific Heat Capacity, J/kg-K 480
890
Thermal Expansion, µm/m-K 17
22

Otherwise Unclassified Properties

Base Metal Price, % relative 11
10
Density, g/cm3 7.6
2.8
Embodied Carbon, kg CO2/kg material 2.5
7.9
Embodied Energy, MJ/kg 37
150
Embodied Water, L/kg 150
1100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 220
3.5 to 7.6
Resilience: Unit (Modulus of Resilience), kJ/m3 460 to 2290
290 to 710
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
49
Strength to Weight: Axial, points 28 to 41
30 to 35
Strength to Weight: Bending, points 25 to 32
35 to 39
Thermal Shock Resistance, points 16 to 23
14 to 16

Alloy Composition

Aluminum (Al), % 0
88 to 92.8
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 16.5 to 19
0
Copper (Cu), % 0
2.6 to 3.6
Iron (Fe), % 62.8 to 71.8
0 to 0.6
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0
0.15 to 0.45
Manganese (Mn), % 11 to 14
0 to 0.55
Nickel (Ni), % 0.5 to 2.5
0 to 0.1
Nitrogen (N), % 0.2 to 0.45
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
4.5 to 6.0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15