EN 1.4020 Stainless Steel vs. SAE-AISI 1045 Steel
Both EN 1.4020 stainless steel and SAE-AISI 1045 steel are iron alloys. They have 68% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.
For each property being compared, the top bar is EN 1.4020 stainless steel and the bottom bar is SAE-AISI 1045 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Brinell Hardness | 190 to 340 | |
180 to 190 |
Elastic (Young's, Tensile) Modulus, GPa | 200 | |
190 |
Elongation at Break, % | 13 to 34 | |
13 to 18 |
Fatigue Strength, MPa | 340 to 540 | |
220 to 370 |
Poisson's Ratio | 0.28 | |
0.29 |
Shear Modulus, GPa | 77 | |
72 |
Shear Strength, MPa | 510 to 680 | |
380 to 410 |
Tensile Strength: Ultimate (UTS), MPa | 770 to 1130 | |
620 to 680 |
Tensile Strength: Yield (Proof), MPa | 430 to 950 | |
330 to 580 |
Thermal Properties
Latent Heat of Fusion, J/g | 280 | |
250 |
Maximum Temperature: Mechanical, °C | 890 | |
400 |
Melting Completion (Liquidus), °C | 1390 | |
1460 |
Melting Onset (Solidus), °C | 1350 | |
1420 |
Specific Heat Capacity, J/kg-K | 480 | |
470 |
Thermal Expansion, µm/m-K | 17 | |
12 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 11 | |
1.8 |
Density, g/cm3 | 7.6 | |
7.8 |
Embodied Carbon, kg CO2/kg material | 2.5 | |
1.4 |
Embodied Energy, MJ/kg | 37 | |
18 |
Embodied Water, L/kg | 150 | |
46 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 140 to 220 | |
84 to 93 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 460 to 2290 | |
300 to 900 |
Stiffness to Weight: Axial, points | 14 | |
13 |
Stiffness to Weight: Bending, points | 25 | |
24 |
Strength to Weight: Axial, points | 28 to 41 | |
22 to 24 |
Strength to Weight: Bending, points | 25 to 32 | |
21 to 22 |
Thermal Shock Resistance, points | 16 to 23 | |
20 to 22 |
Alloy Composition
Carbon (C), % | 0 to 0.15 | |
0.43 to 0.5 |
Chromium (Cr), % | 16.5 to 19 | |
0 |
Iron (Fe), % | 62.8 to 71.8 | |
98.5 to 99 |
Manganese (Mn), % | 11 to 14 | |
0.6 to 0.9 |
Nickel (Ni), % | 0.5 to 2.5 | |
0 |
Nitrogen (N), % | 0.2 to 0.45 | |
0 |
Phosphorus (P), % | 0 to 0.045 | |
0 to 0.040 |
Silicon (Si), % | 0 to 1.0 | |
0 |
Sulfur (S), % | 0 to 0.030 | |
0 to 0.050 |