MakeItFrom.com
Menu (ESC)

EN 1.4020 Stainless Steel vs. C82400 Copper

EN 1.4020 stainless steel belongs to the iron alloys classification, while C82400 copper belongs to the copper alloys. There are 23 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is EN 1.4020 stainless steel and the bottom bar is C82400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 13 to 34
1.0 to 20
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
45
Tensile Strength: Ultimate (UTS), MPa 770 to 1130
500 to 1030
Tensile Strength: Yield (Proof), MPa 430 to 950
260 to 970

Thermal Properties

Latent Heat of Fusion, J/g 280
230
Maximum Temperature: Mechanical, °C 890
270
Melting Completion (Liquidus), °C 1390
1000
Melting Onset (Solidus), °C 1350
900
Specific Heat Capacity, J/kg-K 480
380
Thermal Expansion, µm/m-K 17
17

Otherwise Unclassified Properties

Density, g/cm3 7.6
8.8
Embodied Carbon, kg CO2/kg material 2.5
8.9
Embodied Energy, MJ/kg 37
140
Embodied Water, L/kg 150
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 220
10 to 83
Resilience: Unit (Modulus of Resilience), kJ/m3 460 to 2290
270 to 3870
Stiffness to Weight: Axial, points 14
7.6
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 28 to 41
16 to 33
Strength to Weight: Bending, points 25 to 32
16 to 26
Thermal Shock Resistance, points 16 to 23
17 to 36

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Beryllium (Be), % 0
1.6 to 1.9
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 16.5 to 19
0 to 0.1
Cobalt (Co), % 0
0.2 to 0.65
Copper (Cu), % 0
96 to 98.2
Iron (Fe), % 62.8 to 71.8
0 to 0.2
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 11 to 14
0
Nickel (Ni), % 0.5 to 2.5
0 to 0.2
Nitrogen (N), % 0.2 to 0.45
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.12
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5