MakeItFrom.com
Menu (ESC)

EN 1.4020 Stainless Steel vs. C86200 Bronze

EN 1.4020 stainless steel belongs to the iron alloys classification, while C86200 bronze belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is EN 1.4020 stainless steel and the bottom bar is C86200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 13 to 34
21
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
42
Tensile Strength: Ultimate (UTS), MPa 770 to 1130
710
Tensile Strength: Yield (Proof), MPa 430 to 950
350

Thermal Properties

Latent Heat of Fusion, J/g 280
190
Maximum Temperature: Mechanical, °C 890
160
Melting Completion (Liquidus), °C 1390
940
Melting Onset (Solidus), °C 1350
900
Specific Heat Capacity, J/kg-K 480
410
Thermal Expansion, µm/m-K 17
20

Otherwise Unclassified Properties

Base Metal Price, % relative 11
23
Density, g/cm3 7.6
8.0
Embodied Carbon, kg CO2/kg material 2.5
2.9
Embodied Energy, MJ/kg 37
49
Embodied Water, L/kg 150
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 220
120
Resilience: Unit (Modulus of Resilience), kJ/m3 460 to 2290
540
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 28 to 41
25
Strength to Weight: Bending, points 25 to 32
22
Thermal Shock Resistance, points 16 to 23
23

Alloy Composition

Aluminum (Al), % 0
3.0 to 4.9
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 16.5 to 19
0
Copper (Cu), % 0
60 to 66
Iron (Fe), % 62.8 to 71.8
2.0 to 4.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 11 to 14
2.5 to 5.0
Nickel (Ni), % 0.5 to 2.5
0 to 1.0
Nitrogen (N), % 0.2 to 0.45
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
22 to 28
Residuals, % 0
0 to 1.0