MakeItFrom.com
Menu (ESC)

EN 1.4021 Stainless Steel vs. ASTM A387 Grade 91 Class 2

Both EN 1.4021 stainless steel and ASTM A387 grade 91 class 2 are iron alloys. They have a very high 95% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4021 stainless steel and the bottom bar is ASTM A387 grade 91 class 2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 11 to 17
20
Fatigue Strength, MPa 240 to 380
330
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
75
Shear Strength, MPa 390 to 530
420
Tensile Strength: Ultimate (UTS), MPa 630 to 880
670
Tensile Strength: Yield (Proof), MPa 390 to 670
470

Thermal Properties

Latent Heat of Fusion, J/g 270
270
Maximum Temperature: Mechanical, °C 760
600
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 30
26
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
8.9
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
10

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
7.0
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 1.9
2.6
Embodied Energy, MJ/kg 27
37
Embodied Water, L/kg 100
88

Common Calculations

PREN (Pitting Resistance) 13
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 88 to 110
120
Resilience: Unit (Modulus of Resilience), kJ/m3 400 to 1160
580
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 23 to 31
24
Strength to Weight: Bending, points 21 to 26
22
Thermal Diffusivity, mm2/s 8.1
6.9
Thermal Shock Resistance, points 22 to 31
19

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Carbon (C), % 0.16 to 0.25
0.080 to 0.12
Chromium (Cr), % 12 to 14
8.0 to 9.5
Iron (Fe), % 83.2 to 87.8
87.3 to 90.3
Manganese (Mn), % 0 to 1.5
0.3 to 0.6
Molybdenum (Mo), % 0
0.85 to 1.1
Nickel (Ni), % 0
0 to 0.4
Niobium (Nb), % 0
0.060 to 0.1
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 1.0
0.2 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.010
Titanium (Ti), % 0
0 to 0.010
Vanadium (V), % 0
0.18 to 0.25
Zirconium (Zr), % 0
0 to 0.010