MakeItFrom.com
Menu (ESC)

EN 1.4021 Stainless Steel vs. Grade 26 Titanium

EN 1.4021 stainless steel belongs to the iron alloys classification, while grade 26 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4021 stainless steel and the bottom bar is grade 26 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 11 to 17
23
Fatigue Strength, MPa 240 to 380
250
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
41
Shear Strength, MPa 390 to 530
250
Tensile Strength: Ultimate (UTS), MPa 630 to 880
390
Tensile Strength: Yield (Proof), MPa 390 to 670
350

Thermal Properties

Latent Heat of Fusion, J/g 270
420
Maximum Temperature: Mechanical, °C 760
320
Melting Completion (Liquidus), °C 1440
1660
Melting Onset (Solidus), °C 1400
1610
Specific Heat Capacity, J/kg-K 480
540
Thermal Conductivity, W/m-K 30
21
Thermal Expansion, µm/m-K 11
9.2

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
6.9

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
37
Density, g/cm3 7.7
4.5
Embodied Carbon, kg CO2/kg material 1.9
33
Embodied Energy, MJ/kg 27
530
Embodied Water, L/kg 100
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 88 to 110
85
Resilience: Unit (Modulus of Resilience), kJ/m3 400 to 1160
580
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 23 to 31
24
Strength to Weight: Bending, points 21 to 26
26
Thermal Diffusivity, mm2/s 8.1
8.6
Thermal Shock Resistance, points 22 to 31
28

Alloy Composition

Carbon (C), % 0.16 to 0.25
0 to 0.080
Chromium (Cr), % 12 to 14
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 83.2 to 87.8
0 to 0.3
Manganese (Mn), % 0 to 1.5
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.040
0
Ruthenium (Ru), % 0
0.080 to 0.14
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
98.8 to 99.92
Residuals, % 0
0 to 0.4