MakeItFrom.com
Menu (ESC)

EN 1.4021 Stainless Steel vs. C86300 Bronze

EN 1.4021 stainless steel belongs to the iron alloys classification, while C86300 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4021 stainless steel and the bottom bar is C86300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 11 to 17
14
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
42
Tensile Strength: Ultimate (UTS), MPa 630 to 880
850
Tensile Strength: Yield (Proof), MPa 390 to 670
480

Thermal Properties

Latent Heat of Fusion, J/g 270
200
Maximum Temperature: Mechanical, °C 760
160
Melting Completion (Liquidus), °C 1440
920
Melting Onset (Solidus), °C 1400
890
Specific Heat Capacity, J/kg-K 480
420
Thermal Conductivity, W/m-K 30
35
Thermal Expansion, µm/m-K 11
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
23
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 1.9
3.0
Embodied Energy, MJ/kg 27
51
Embodied Water, L/kg 100
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 88 to 110
100
Resilience: Unit (Modulus of Resilience), kJ/m3 400 to 1160
1030
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 23 to 31
30
Strength to Weight: Bending, points 21 to 26
25
Thermal Diffusivity, mm2/s 8.1
11
Thermal Shock Resistance, points 22 to 31
28

Alloy Composition

Aluminum (Al), % 0
5.0 to 7.5
Carbon (C), % 0.16 to 0.25
0
Chromium (Cr), % 12 to 14
0
Copper (Cu), % 0
60 to 66
Iron (Fe), % 83.2 to 87.8
2.0 to 4.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 1.5
2.5 to 5.0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
22 to 28
Residuals, % 0
0 to 1.0