MakeItFrom.com
Menu (ESC)

EN 1.4021 Stainless Steel vs. S82012 Stainless Steel

Both EN 1.4021 stainless steel and S82012 stainless steel are iron alloys. They have 89% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4021 stainless steel and the bottom bar is S82012 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 11 to 17
40
Fatigue Strength, MPa 240 to 380
480
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
78
Shear Strength, MPa 390 to 530
550
Tensile Strength: Ultimate (UTS), MPa 630 to 880
800
Tensile Strength: Yield (Proof), MPa 390 to 670
560

Thermal Properties

Latent Heat of Fusion, J/g 270
280
Maximum Temperature: Corrosion, °C 390
420
Maximum Temperature: Mechanical, °C 760
950
Melting Completion (Liquidus), °C 1440
1430
Melting Onset (Solidus), °C 1400
1380
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 30
15
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
11
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 1.9
2.4
Embodied Energy, MJ/kg 27
35
Embodied Water, L/kg 100
140

Common Calculations

PREN (Pitting Resistance) 13
24
Resilience: Ultimate (Unit Rupture Work), MJ/m3 88 to 110
290
Resilience: Unit (Modulus of Resilience), kJ/m3 400 to 1160
790
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 23 to 31
29
Strength to Weight: Bending, points 21 to 26
25
Thermal Diffusivity, mm2/s 8.1
3.9
Thermal Shock Resistance, points 22 to 31
23

Alloy Composition

Carbon (C), % 0.16 to 0.25
0 to 0.050
Chromium (Cr), % 12 to 14
19 to 20.5
Copper (Cu), % 0
0 to 1.0
Iron (Fe), % 83.2 to 87.8
71.3 to 77.9
Manganese (Mn), % 0 to 1.5
2.0 to 4.0
Molybdenum (Mo), % 0
0.1 to 0.6
Nickel (Ni), % 0
0.8 to 1.5
Nitrogen (N), % 0
0.16 to 0.26
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 0.8
Sulfur (S), % 0 to 0.015
0 to 0.0050