MakeItFrom.com
Menu (ESC)

EN 1.4024 Stainless Steel vs. EN 1.7729 Steel

Both EN 1.4024 stainless steel and EN 1.7729 steel are iron alloys. They have 88% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4024 stainless steel and the bottom bar is EN 1.7729 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 15 to 22
17
Fatigue Strength, MPa 220 to 300
500
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Shear Strength, MPa 370 to 460
560
Tensile Strength: Ultimate (UTS), MPa 590 to 750
910
Tensile Strength: Yield (Proof), MPa 330 to 510
750

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 760
430
Melting Completion (Liquidus), °C 1440
1470
Melting Onset (Solidus), °C 1400
1430
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 30
40
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
3.8
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 1.9
3.3
Embodied Energy, MJ/kg 27
49
Embodied Water, L/kg 100
59

Common Calculations

PREN (Pitting Resistance) 13
4.4
Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 110
150
Resilience: Unit (Modulus of Resilience), kJ/m3 280 to 660
1500
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 21 to 27
32
Strength to Weight: Bending, points 20 to 24
27
Thermal Diffusivity, mm2/s 8.1
11
Thermal Shock Resistance, points 21 to 26
27

Alloy Composition

Aluminum (Al), % 0
0.015 to 0.080
Arsenic (As), % 0
0 to 0.020
Boron (B), % 0
0.0010 to 0.010
Carbon (C), % 0.12 to 0.17
0.17 to 0.23
Chromium (Cr), % 12 to 14
0.9 to 1.2
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 83.8 to 87.9
94.8 to 97
Manganese (Mn), % 0 to 1.0
0.35 to 0.75
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.4
Sulfur (S), % 0 to 0.015
0 to 0.015
Tin (Sn), % 0
0 to 0.020
Titanium (Ti), % 0
0.070 to 0.15
Vanadium (V), % 0
0.6 to 0.8