MakeItFrom.com
Menu (ESC)

EN 1.4024 Stainless Steel vs. EZ33A Magnesium

EN 1.4024 stainless steel belongs to the iron alloys classification, while EZ33A magnesium belongs to the magnesium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4024 stainless steel and the bottom bar is EZ33A magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
44
Elongation at Break, % 15 to 22
2.6
Fatigue Strength, MPa 220 to 300
70
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
17
Shear Strength, MPa 370 to 460
140
Tensile Strength: Ultimate (UTS), MPa 590 to 750
150
Tensile Strength: Yield (Proof), MPa 330 to 510
100

Thermal Properties

Latent Heat of Fusion, J/g 270
330
Maximum Temperature: Mechanical, °C 760
250
Melting Completion (Liquidus), °C 1440
640
Melting Onset (Solidus), °C 1400
570
Specific Heat Capacity, J/kg-K 480
970
Thermal Conductivity, W/m-K 30
100
Thermal Expansion, µm/m-K 11
27

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
24
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
110

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
25
Density, g/cm3 7.7
1.9
Embodied Carbon, kg CO2/kg material 1.9
25
Embodied Energy, MJ/kg 27
190
Embodied Water, L/kg 100
930

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 110
3.6
Resilience: Unit (Modulus of Resilience), kJ/m3 280 to 660
120
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
61
Strength to Weight: Axial, points 21 to 27
22
Strength to Weight: Bending, points 20 to 24
33
Thermal Diffusivity, mm2/s 8.1
54
Thermal Shock Resistance, points 21 to 26
9.2

Alloy Composition

Carbon (C), % 0.12 to 0.17
0
Chromium (Cr), % 12 to 14
0
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 83.8 to 87.9
0
Magnesium (Mg), % 0
91.5 to 95
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 0
0 to 0.010
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Unspecified Rare Earths, % 0
2.5 to 4.0
Zinc (Zn), % 0
2.0 to 3.1
Zirconium (Zr), % 0
0.5 to 1.0
Residuals, % 0
0 to 0.3