MakeItFrom.com
Menu (ESC)

EN 1.4029 Stainless Steel vs. 6262 Aluminum

EN 1.4029 stainless steel belongs to the iron alloys classification, while 6262 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4029 stainless steel and the bottom bar is 6262 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 10 to 20
4.6 to 10
Fatigue Strength, MPa 270 to 400
90 to 110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Shear Strength, MPa 440 to 550
170 to 240
Tensile Strength: Ultimate (UTS), MPa 700 to 930
290 to 390
Tensile Strength: Yield (Proof), MPa 410 to 740
270 to 360

Thermal Properties

Latent Heat of Fusion, J/g 270
400
Maximum Temperature: Mechanical, °C 750
160
Melting Completion (Liquidus), °C 1440
650
Melting Onset (Solidus), °C 1400
580
Specific Heat Capacity, J/kg-K 480
890
Thermal Conductivity, W/m-K 30
170
Thermal Expansion, µm/m-K 10
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.1
44
Electrical Conductivity: Equal Weight (Specific), % IACS 3.7
140

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
10
Density, g/cm3 7.7
2.8
Embodied Carbon, kg CO2/kg material 2.0
8.3
Embodied Energy, MJ/kg 28
150
Embodied Water, L/kg 100
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89 to 120
17 to 31
Resilience: Unit (Modulus of Resilience), kJ/m3 440 to 1410
530 to 940
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
48
Strength to Weight: Axial, points 25 to 33
29 to 39
Strength to Weight: Bending, points 23 to 27
35 to 42
Thermal Diffusivity, mm2/s 8.1
69
Thermal Shock Resistance, points 26 to 34
13 to 18

Alloy Composition

Aluminum (Al), % 0
94.7 to 97.8
Bismuth (Bi), % 0
0.4 to 0.7
Carbon (C), % 0.25 to 0.32
0
Chromium (Cr), % 12 to 13.5
0.040 to 0.14
Copper (Cu), % 0
0.15 to 0.4
Iron (Fe), % 82.8 to 87.6
0 to 0.7
Lead (Pb), % 0
0.4 to 0.7
Magnesium (Mg), % 0
0.8 to 1.2
Manganese (Mn), % 0 to 1.5
0 to 0.15
Molybdenum (Mo), % 0 to 0.6
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0.4 to 0.8
Sulfur (S), % 0.15 to 0.25
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15