EN 1.4029 Stainless Steel vs. Grade 1 Titanium
EN 1.4029 stainless steel belongs to the iron alloys classification, while grade 1 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.
For each property being compared, the top bar is EN 1.4029 stainless steel and the bottom bar is grade 1 titanium.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
110 |
Elongation at Break, % | 10 to 20 | |
28 |
Fatigue Strength, MPa | 270 to 400 | |
170 |
Poisson's Ratio | 0.28 | |
0.32 |
Shear Modulus, GPa | 76 | |
39 |
Shear Strength, MPa | 440 to 550 | |
200 |
Tensile Strength: Ultimate (UTS), MPa | 700 to 930 | |
310 |
Tensile Strength: Yield (Proof), MPa | 410 to 740 | |
220 |
Thermal Properties
Latent Heat of Fusion, J/g | 270 | |
420 |
Maximum Temperature: Mechanical, °C | 750 | |
320 |
Melting Completion (Liquidus), °C | 1440 | |
1660 |
Melting Onset (Solidus), °C | 1400 | |
1610 |
Specific Heat Capacity, J/kg-K | 480 | |
540 |
Thermal Conductivity, W/m-K | 30 | |
20 |
Thermal Expansion, µm/m-K | 10 | |
8.8 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 3.1 | |
3.7 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 3.7 | |
7.3 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 7.0 | |
37 |
Density, g/cm3 | 7.7 | |
4.5 |
Embodied Carbon, kg CO2/kg material | 2.0 | |
31 |
Embodied Energy, MJ/kg | 28 | |
510 |
Embodied Water, L/kg | 100 | |
110 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 89 to 120 | |
79 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 440 to 1410 | |
230 |
Stiffness to Weight: Axial, points | 14 | |
13 |
Stiffness to Weight: Bending, points | 25 | |
35 |
Strength to Weight: Axial, points | 25 to 33 | |
19 |
Strength to Weight: Bending, points | 23 to 27 | |
23 |
Thermal Diffusivity, mm2/s | 8.1 | |
8.2 |
Thermal Shock Resistance, points | 26 to 34 | |
24 |
Alloy Composition
Carbon (C), % | 0.25 to 0.32 | |
0 to 0.080 |
Chromium (Cr), % | 12 to 13.5 | |
0 |
Hydrogen (H), % | 0 | |
0 to 0.015 |
Iron (Fe), % | 82.8 to 87.6 | |
0 to 0.2 |
Manganese (Mn), % | 0 to 1.5 | |
0 |
Molybdenum (Mo), % | 0 to 0.6 | |
0 |
Nitrogen (N), % | 0 | |
0 to 0.030 |
Oxygen (O), % | 0 | |
0 to 0.18 |
Phosphorus (P), % | 0 to 0.040 | |
0 |
Silicon (Si), % | 0 to 1.0 | |
0 |
Sulfur (S), % | 0.15 to 0.25 | |
0 |
Titanium (Ti), % | 0 | |
99.095 to 100 |
Residuals, % | 0 | |
0 to 0.4 |