MakeItFrom.com
Menu (ESC)

EN 1.4031 Stainless Steel vs. N06025 Nickel

EN 1.4031 stainless steel belongs to the iron alloys classification, while N06025 nickel belongs to the nickel alloys. They have a modest 24% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4031 stainless steel and the bottom bar is N06025 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 11 to 13
32
Fatigue Strength, MPa 220 to 400
220
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
76
Shear Strength, MPa 400 to 540
500
Tensile Strength: Ultimate (UTS), MPa 670 to 900
760
Tensile Strength: Yield (Proof), MPa 390 to 730
310

Thermal Properties

Latent Heat of Fusion, J/g 280
320
Maximum Temperature: Mechanical, °C 770
1000
Melting Completion (Liquidus), °C 1440
1350
Melting Onset (Solidus), °C 1400
1300
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 30
11
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.1
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 3.7
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
50
Density, g/cm3 7.7
8.2
Embodied Carbon, kg CO2/kg material 1.9
8.4
Embodied Energy, MJ/kg 27
120
Embodied Water, L/kg 100
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 77 to 94
190
Resilience: Unit (Modulus of Resilience), kJ/m3 380 to 1360
240
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 24 to 32
26
Strength to Weight: Bending, points 22 to 27
22
Thermal Diffusivity, mm2/s 8.1
2.9
Thermal Shock Resistance, points 23 to 32
21

Alloy Composition

Aluminum (Al), % 0
1.8 to 2.4
Carbon (C), % 0.36 to 0.42
0.15 to 0.25
Chromium (Cr), % 12.5 to 14.5
24 to 26
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 83 to 87.1
8.0 to 11
Manganese (Mn), % 0 to 1.0
0 to 0.15
Nickel (Ni), % 0
59.2 to 65.9
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.010
Titanium (Ti), % 0
0.1 to 0.2
Yttrium (Y), % 0
0.050 to 0.12
Zinc (Zn), % 0
0.010 to 0.1