MakeItFrom.com
Menu (ESC)

EN 1.4034 Stainless Steel vs. 850.0 Aluminum

EN 1.4034 stainless steel belongs to the iron alloys classification, while 850.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4034 stainless steel and the bottom bar is 850.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 11 to 14
7.9
Fatigue Strength, MPa 230 to 400
59
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Shear Strength, MPa 420 to 540
100
Tensile Strength: Ultimate (UTS), MPa 690 to 900
140
Tensile Strength: Yield (Proof), MPa 390 to 730
76

Thermal Properties

Latent Heat of Fusion, J/g 270
380
Maximum Temperature: Mechanical, °C 770
190
Melting Completion (Liquidus), °C 1440
650
Melting Onset (Solidus), °C 1390
370
Specific Heat Capacity, J/kg-K 480
850
Thermal Conductivity, W/m-K 30
180
Thermal Expansion, µm/m-K 11
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.1
47
Electrical Conductivity: Equal Weight (Specific), % IACS 3.7
140

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
14
Density, g/cm3 7.7
3.1
Embodied Carbon, kg CO2/kg material 2.0
8.5
Embodied Energy, MJ/kg 27
160
Embodied Water, L/kg 100
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 81 to 94
9.1
Resilience: Unit (Modulus of Resilience), kJ/m3 400 to 1370
42
Stiffness to Weight: Axial, points 14
12
Stiffness to Weight: Bending, points 25
44
Strength to Weight: Axial, points 25 to 32
12
Strength to Weight: Bending, points 22 to 27
19
Thermal Diffusivity, mm2/s 8.1
69
Thermal Shock Resistance, points 24 to 32
6.1

Alloy Composition

Aluminum (Al), % 0
88.3 to 93.1
Carbon (C), % 0.43 to 0.5
0
Chromium (Cr), % 12.5 to 14.5
0
Copper (Cu), % 0
0.7 to 1.3
Iron (Fe), % 83 to 87.1
0 to 0.7
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.0
0 to 0.1
Nickel (Ni), % 0
0.7 to 1.3
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.7
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
5.5 to 7.0
Titanium (Ti), % 0
0 to 0.2
Residuals, % 0
0 to 0.3