MakeItFrom.com
Menu (ESC)

EN 1.4034 Stainless Steel vs. B443.0 Aluminum

EN 1.4034 stainless steel belongs to the iron alloys classification, while B443.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4034 stainless steel and the bottom bar is B443.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 11 to 14
4.9
Fatigue Strength, MPa 230 to 400
55
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Shear Strength, MPa 420 to 540
110
Tensile Strength: Ultimate (UTS), MPa 690 to 900
150
Tensile Strength: Yield (Proof), MPa 390 to 730
50

Thermal Properties

Latent Heat of Fusion, J/g 270
470
Maximum Temperature: Mechanical, °C 770
170
Melting Completion (Liquidus), °C 1440
620
Melting Onset (Solidus), °C 1390
600
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 30
150
Thermal Expansion, µm/m-K 11
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.1
38
Electrical Conductivity: Equal Weight (Specific), % IACS 3.7
130

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
9.5
Density, g/cm3 7.7
2.7
Embodied Carbon, kg CO2/kg material 2.0
8.0
Embodied Energy, MJ/kg 27
150
Embodied Water, L/kg 100
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 81 to 94
5.6
Resilience: Unit (Modulus of Resilience), kJ/m3 400 to 1370
18
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
52
Strength to Weight: Axial, points 25 to 32
15
Strength to Weight: Bending, points 22 to 27
23
Thermal Diffusivity, mm2/s 8.1
61
Thermal Shock Resistance, points 24 to 32
6.8

Alloy Composition

Aluminum (Al), % 0
91.9 to 95.5
Carbon (C), % 0.43 to 0.5
0
Chromium (Cr), % 12.5 to 14.5
0
Copper (Cu), % 0
0 to 0.15
Iron (Fe), % 83 to 87.1
0 to 0.8
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0 to 0.35
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
4.5 to 6.0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.35
Residuals, % 0
0 to 0.15