EN 1.4034 Stainless Steel vs. EN 1.5414 Steel
Both EN 1.4034 stainless steel and EN 1.5414 steel are iron alloys. They have 86% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.
For each property being compared, the top bar is EN 1.4034 stainless steel and the bottom bar is EN 1.5414 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
190 |
Elongation at Break, % | 11 to 14 | |
22 |
Fatigue Strength, MPa | 230 to 400 | |
250 to 270 |
Poisson's Ratio | 0.28 | |
0.29 |
Shear Modulus, GPa | 76 | |
73 |
Shear Strength, MPa | 420 to 540 | |
350 to 370 |
Tensile Strength: Ultimate (UTS), MPa | 690 to 900 | |
550 to 580 |
Tensile Strength: Yield (Proof), MPa | 390 to 730 | |
350 to 380 |
Thermal Properties
Latent Heat of Fusion, J/g | 270 | |
250 |
Maximum Temperature: Mechanical, °C | 770 | |
410 |
Melting Completion (Liquidus), °C | 1440 | |
1470 |
Melting Onset (Solidus), °C | 1390 | |
1420 |
Specific Heat Capacity, J/kg-K | 480 | |
470 |
Thermal Conductivity, W/m-K | 30 | |
44 |
Thermal Expansion, µm/m-K | 11 | |
13 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 3.1 | |
7.3 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 3.7 | |
8.4 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 7.0 | |
2.6 |
Density, g/cm3 | 7.7 | |
7.9 |
Embodied Carbon, kg CO2/kg material | 2.0 | |
1.6 |
Embodied Energy, MJ/kg | 27 | |
21 |
Embodied Water, L/kg | 100 | |
50 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 81 to 94 | |
110 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 400 to 1370 | |
320 to 370 |
Stiffness to Weight: Axial, points | 14 | |
13 |
Stiffness to Weight: Bending, points | 25 | |
24 |
Strength to Weight: Axial, points | 25 to 32 | |
19 to 20 |
Strength to Weight: Bending, points | 22 to 27 | |
19 to 20 |
Thermal Diffusivity, mm2/s | 8.1 | |
12 |
Thermal Shock Resistance, points | 24 to 32 | |
16 to 17 |
Alloy Composition
Carbon (C), % | 0.43 to 0.5 | |
0 to 0.2 |
Chromium (Cr), % | 12.5 to 14.5 | |
0 to 0.3 |
Copper (Cu), % | 0 | |
0 to 0.3 |
Iron (Fe), % | 83 to 87.1 | |
96.4 to 98.7 |
Manganese (Mn), % | 0 to 1.0 | |
0.9 to 1.5 |
Molybdenum (Mo), % | 0 | |
0.45 to 0.6 |
Nickel (Ni), % | 0 | |
0 to 0.3 |
Nitrogen (N), % | 0 | |
0 to 0.012 |
Phosphorus (P), % | 0 to 0.040 | |
0 to 0.015 |
Silicon (Si), % | 0 to 1.0 | |
0 to 0.4 |
Sulfur (S), % | 0 to 0.015 | |
0 to 0.0050 |