MakeItFrom.com
Menu (ESC)

EN 1.4034 Stainless Steel vs. C84800 Brass

EN 1.4034 stainless steel belongs to the iron alloys classification, while C84800 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4034 stainless steel and the bottom bar is C84800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 11 to 14
18
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
39
Tensile Strength: Ultimate (UTS), MPa 690 to 900
230
Tensile Strength: Yield (Proof), MPa 390 to 730
100

Thermal Properties

Latent Heat of Fusion, J/g 270
180
Maximum Temperature: Mechanical, °C 770
150
Melting Completion (Liquidus), °C 1440
950
Melting Onset (Solidus), °C 1390
830
Specific Heat Capacity, J/kg-K 480
370
Thermal Conductivity, W/m-K 30
72
Thermal Expansion, µm/m-K 11
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.1
16
Electrical Conductivity: Equal Weight (Specific), % IACS 3.7
17

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
27
Density, g/cm3 7.7
8.6
Embodied Carbon, kg CO2/kg material 2.0
2.8
Embodied Energy, MJ/kg 27
46
Embodied Water, L/kg 100
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 81 to 94
34
Resilience: Unit (Modulus of Resilience), kJ/m3 400 to 1370
53
Stiffness to Weight: Axial, points 14
6.6
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 25 to 32
7.3
Strength to Weight: Bending, points 22 to 27
9.6
Thermal Diffusivity, mm2/s 8.1
23
Thermal Shock Resistance, points 24 to 32
8.2

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0.43 to 0.5
0
Chromium (Cr), % 12.5 to 14.5
0
Copper (Cu), % 0
75 to 77
Iron (Fe), % 83 to 87.1
0 to 0.4
Lead (Pb), % 0
5.5 to 7.0
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.040
0 to 1.5
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.015
0 to 0.080
Tin (Sn), % 0
2.0 to 3.0
Zinc (Zn), % 0
13 to 17
Residuals, % 0
0 to 0.7