MakeItFrom.com
Menu (ESC)

EN 1.4034 Stainless Steel vs. ZK51A Magnesium

EN 1.4034 stainless steel belongs to the iron alloys classification, while ZK51A magnesium belongs to the magnesium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4034 stainless steel and the bottom bar is ZK51A magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
45
Elongation at Break, % 11 to 14
4.7
Fatigue Strength, MPa 230 to 400
62
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
18
Shear Strength, MPa 420 to 540
160
Tensile Strength: Ultimate (UTS), MPa 690 to 900
240
Tensile Strength: Yield (Proof), MPa 390 to 730
150

Thermal Properties

Latent Heat of Fusion, J/g 270
340
Maximum Temperature: Mechanical, °C 770
120
Melting Completion (Liquidus), °C 1440
640
Melting Onset (Solidus), °C 1390
550
Specific Heat Capacity, J/kg-K 480
970
Thermal Conductivity, W/m-K 30
110
Thermal Expansion, µm/m-K 11
26

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.1
28
Electrical Conductivity: Equal Weight (Specific), % IACS 3.7
140

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
13
Density, g/cm3 7.7
1.8
Embodied Carbon, kg CO2/kg material 2.0
24
Embodied Energy, MJ/kg 27
160
Embodied Water, L/kg 100
940

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 81 to 94
10
Resilience: Unit (Modulus of Resilience), kJ/m3 400 to 1370
260
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
64
Strength to Weight: Axial, points 25 to 32
36
Strength to Weight: Bending, points 22 to 27
47
Thermal Diffusivity, mm2/s 8.1
61
Thermal Shock Resistance, points 24 to 32
15

Alloy Composition

Carbon (C), % 0.43 to 0.5
0
Chromium (Cr), % 12.5 to 14.5
0
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 83 to 87.1
0
Magnesium (Mg), % 0
93.1 to 95.9
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 0
0 to 0.010
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Zinc (Zn), % 0
3.6 to 5.5
Zirconium (Zr), % 0
0.5 to 1.0
Residuals, % 0
0 to 0.3