MakeItFrom.com
Menu (ESC)

EN 1.4035 Stainless Steel vs. AISI 444 Stainless Steel

Both EN 1.4035 stainless steel and AISI 444 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a moderately high 91% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4035 stainless steel and the bottom bar is AISI 444 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
190
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 18
23
Fatigue Strength, MPa 250
210
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
78
Shear Strength, MPa 430
300
Tensile Strength: Ultimate (UTS), MPa 690
470
Tensile Strength: Yield (Proof), MPa 400
310

Thermal Properties

Latent Heat of Fusion, J/g 270
290
Maximum Temperature: Corrosion, °C 380
580
Maximum Temperature: Mechanical, °C 760
930
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1390
1420
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 29
23
Thermal Expansion, µm/m-K 10
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.5
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
15
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 2.0
3.4
Embodied Energy, MJ/kg 27
47
Embodied Water, L/kg 100
130

Common Calculations

PREN (Pitting Resistance) 13
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
95
Resilience: Unit (Modulus of Resilience), kJ/m3 420
240
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 25
17
Strength to Weight: Bending, points 22
17
Thermal Diffusivity, mm2/s 7.8
6.2
Thermal Shock Resistance, points 25
16

Alloy Composition

Carbon (C), % 0.43 to 0.5
0 to 0.025
Chromium (Cr), % 12.5 to 14
17.5 to 19.5
Iron (Fe), % 82.1 to 86.9
73.3 to 80.8
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 0
1.8 to 2.5
Nickel (Ni), % 0
0 to 1.0
Niobium (Nb), % 0
0.2 to 0.8
Nitrogen (N), % 0
0 to 0.035
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0.15 to 0.35
0 to 0.030
Titanium (Ti), % 0
0.2 to 0.8