MakeItFrom.com
Menu (ESC)

EN 1.4035 Stainless Steel vs. EN 1.4621 Stainless Steel

Both EN 1.4035 stainless steel and EN 1.4621 stainless steel are iron alloys. They have a moderately high 91% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4035 stainless steel and the bottom bar is EN 1.4621 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 18
25
Fatigue Strength, MPa 250
190
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 76
78
Shear Strength, MPa 430
320
Tensile Strength: Ultimate (UTS), MPa 690
500
Tensile Strength: Yield (Proof), MPa 400
270

Thermal Properties

Latent Heat of Fusion, J/g 270
290
Maximum Temperature: Corrosion, °C 380
510
Maximum Temperature: Mechanical, °C 760
970
Melting Completion (Liquidus), °C 1430
1440
Melting Onset (Solidus), °C 1390
1390
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 29
21
Thermal Expansion, µm/m-K 10
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 3.5
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
14
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 2.0
2.8
Embodied Energy, MJ/kg 27
41
Embodied Water, L/kg 100
140

Common Calculations

PREN (Pitting Resistance) 13
21
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
110
Resilience: Unit (Modulus of Resilience), kJ/m3 420
190
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 25
18
Strength to Weight: Bending, points 22
18
Thermal Diffusivity, mm2/s 7.8
5.7
Thermal Shock Resistance, points 25
17

Alloy Composition

Carbon (C), % 0.43 to 0.5
0 to 0.030
Chromium (Cr), % 12.5 to 14
20 to 21.5
Copper (Cu), % 0
0.1 to 1.0
Iron (Fe), % 82.1 to 86.9
74.4 to 79.7
Manganese (Mn), % 0 to 2.0
0 to 1.0
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0.15 to 0.35
0 to 0.015