MakeItFrom.com
Menu (ESC)

EN 1.4057 Stainless Steel vs. EN 1.5501 Steel

Both EN 1.4057 stainless steel and EN 1.5501 steel are iron alloys. They have 82% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4057 stainless steel and the bottom bar is EN 1.5501 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 11 to 17
12 to 17
Fatigue Strength, MPa 320 to 430
180 to 270
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Shear Strength, MPa 520 to 580
270 to 310
Tensile Strength: Ultimate (UTS), MPa 840 to 980
390 to 510
Tensile Strength: Yield (Proof), MPa 530 to 790
260 to 420

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 850
400
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1390
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 25
52
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.8
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.2
1.4
Embodied Energy, MJ/kg 32
18
Embodied Water, L/kg 120
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 96 to 130
40 to 83
Resilience: Unit (Modulus of Resilience), kJ/m3 700 to 1610
190 to 460
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 30 to 35
14 to 18
Strength to Weight: Bending, points 26 to 28
15 to 18
Thermal Diffusivity, mm2/s 6.7
14
Thermal Shock Resistance, points 30 to 35
11 to 15

Alloy Composition

Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0.12 to 0.22
0.13 to 0.16
Chromium (Cr), % 15 to 17
0
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 77.7 to 83.4
98.4 to 99.269
Manganese (Mn), % 0 to 1.5
0.6 to 0.8
Nickel (Ni), % 1.5 to 2.5
0
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.3
Sulfur (S), % 0 to 0.015
0 to 0.025

Comparable Variants