MakeItFrom.com
Menu (ESC)

EN 1.4057 Stainless Steel vs. Grade 33 Titanium

EN 1.4057 stainless steel belongs to the iron alloys classification, while grade 33 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4057 stainless steel and the bottom bar is grade 33 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 11 to 17
23
Fatigue Strength, MPa 320 to 430
250
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
41
Shear Strength, MPa 520 to 580
240
Tensile Strength: Ultimate (UTS), MPa 840 to 980
390
Tensile Strength: Yield (Proof), MPa 530 to 790
350

Thermal Properties

Latent Heat of Fusion, J/g 280
420
Maximum Temperature: Mechanical, °C 850
320
Melting Completion (Liquidus), °C 1440
1660
Melting Onset (Solidus), °C 1390
1610
Specific Heat Capacity, J/kg-K 480
540
Thermal Conductivity, W/m-K 25
21
Thermal Expansion, µm/m-K 10
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
6.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
55
Density, g/cm3 7.7
4.5
Embodied Carbon, kg CO2/kg material 2.2
33
Embodied Energy, MJ/kg 32
530
Embodied Water, L/kg 120
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 96 to 130
86
Resilience: Unit (Modulus of Resilience), kJ/m3 700 to 1610
590
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 30 to 35
24
Strength to Weight: Bending, points 26 to 28
26
Thermal Diffusivity, mm2/s 6.7
8.7
Thermal Shock Resistance, points 30 to 35
30

Alloy Composition

Carbon (C), % 0.12 to 0.22
0 to 0.080
Chromium (Cr), % 15 to 17
0.1 to 0.2
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 77.7 to 83.4
0 to 0.3
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 1.5 to 2.5
0.35 to 0.55
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.25
Palladium (Pd), % 0
0.010 to 0.020
Phosphorus (P), % 0 to 0.040
0
Ruthenium (Ru), % 0
0.020 to 0.040
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
98.1 to 99.52
Residuals, % 0
0 to 0.4