MakeItFrom.com
Menu (ESC)

EN 1.4057 Stainless Steel vs. C85400 Brass

EN 1.4057 stainless steel belongs to the iron alloys classification, while C85400 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4057 stainless steel and the bottom bar is C85400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 11 to 17
23
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
40
Tensile Strength: Ultimate (UTS), MPa 840 to 980
220
Tensile Strength: Yield (Proof), MPa 530 to 790
85

Thermal Properties

Latent Heat of Fusion, J/g 280
180
Maximum Temperature: Mechanical, °C 850
130
Melting Completion (Liquidus), °C 1440
940
Melting Onset (Solidus), °C 1390
940
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 25
89
Thermal Expansion, µm/m-K 10
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
20
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
22

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
25
Density, g/cm3 7.7
8.3
Embodied Carbon, kg CO2/kg material 2.2
2.8
Embodied Energy, MJ/kg 32
46
Embodied Water, L/kg 120
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 96 to 130
40
Resilience: Unit (Modulus of Resilience), kJ/m3 700 to 1610
35
Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 30 to 35
7.5
Strength to Weight: Bending, points 26 to 28
9.9
Thermal Diffusivity, mm2/s 6.7
28
Thermal Shock Resistance, points 30 to 35
7.6

Alloy Composition

Aluminum (Al), % 0
0 to 0.35
Carbon (C), % 0.12 to 0.22
0
Chromium (Cr), % 15 to 17
0
Copper (Cu), % 0
65 to 70
Iron (Fe), % 77.7 to 83.4
0 to 0.7
Lead (Pb), % 0
1.5 to 3.8
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 1.5 to 2.5
0 to 1.0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.050
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0.5 to 1.5
Zinc (Zn), % 0
24 to 32
Residuals, % 0
0 to 1.1