MakeItFrom.com
Menu (ESC)

EN 1.4062 Stainless Steel vs. 238.0 Aluminum

EN 1.4062 stainless steel belongs to the iron alloys classification, while 238.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4062 stainless steel and the bottom bar is 238.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
76
Elongation at Break, % 23 to 34
1.5
Fatigue Strength, MPa 410 to 420
110
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 79
28
Tensile Strength: Ultimate (UTS), MPa 770 to 800
210
Tensile Strength: Yield (Proof), MPa 530 to 600
170

Thermal Properties

Latent Heat of Fusion, J/g 290
430
Maximum Temperature: Mechanical, °C 1030
170
Melting Completion (Liquidus), °C 1430
600
Melting Onset (Solidus), °C 1380
510
Specific Heat Capacity, J/kg-K 480
840
Thermal Conductivity, W/m-K 15
100
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
25
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
67

Otherwise Unclassified Properties

Base Metal Price, % relative 12
12
Density, g/cm3 7.7
3.4
Embodied Carbon, kg CO2/kg material 2.6
7.4
Embodied Energy, MJ/kg 37
140
Embodied Water, L/kg 150
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170 to 230
2.9
Resilience: Unit (Modulus of Resilience), kJ/m3 690 to 910
180
Stiffness to Weight: Axial, points 14
12
Stiffness to Weight: Bending, points 25
42
Strength to Weight: Axial, points 28 to 29
17
Strength to Weight: Bending, points 24 to 25
23
Thermal Diffusivity, mm2/s 4.0
37
Thermal Shock Resistance, points 21 to 22
9.1

Alloy Composition

Aluminum (Al), % 0
81.9 to 84.9
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 21.5 to 24
0
Copper (Cu), % 0
9.5 to 10.5
Iron (Fe), % 69.3 to 77.3
1.0 to 1.5
Magnesium (Mg), % 0
0 to 0.25
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 0 to 0.45
0
Nickel (Ni), % 1.0 to 2.9
0
Nitrogen (N), % 0.16 to 0.28
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
3.6 to 4.4
Sulfur (S), % 0 to 0.010
0
Zinc (Zn), % 0
1.0 to 1.5