MakeItFrom.com
Menu (ESC)

EN 1.4062 Stainless Steel vs. AWS ER90S-B9

Both EN 1.4062 stainless steel and AWS ER90S-B9 are iron alloys. They have 84% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4062 stainless steel and the bottom bar is AWS ER90S-B9.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 23 to 34
18
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 79
75
Tensile Strength: Ultimate (UTS), MPa 770 to 800
690
Tensile Strength: Yield (Proof), MPa 530 to 600
470

Thermal Properties

Latent Heat of Fusion, J/g 290
270
Melting Completion (Liquidus), °C 1430
1450
Melting Onset (Solidus), °C 1380
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
25
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 12
7.0
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.6
2.6
Embodied Energy, MJ/kg 37
37
Embodied Water, L/kg 150
91

Common Calculations

PREN (Pitting Resistance) 27
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 170 to 230
110
Resilience: Unit (Modulus of Resilience), kJ/m3 690 to 910
570
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 28 to 29
25
Strength to Weight: Bending, points 24 to 25
22
Thermal Diffusivity, mm2/s 4.0
6.9
Thermal Shock Resistance, points 21 to 22
19

Alloy Composition

Aluminum (Al), % 0
0 to 0.040
Carbon (C), % 0 to 0.030
0.070 to 0.13
Chromium (Cr), % 21.5 to 24
8.0 to 10.5
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 69.3 to 77.3
84.4 to 90.7
Manganese (Mn), % 0 to 2.0
0 to 1.2
Molybdenum (Mo), % 0 to 0.45
0.85 to 1.2
Nickel (Ni), % 1.0 to 2.9
0 to 0.8
Niobium (Nb), % 0
0.020 to 0.1
Nitrogen (N), % 0.16 to 0.28
0.030 to 0.070
Phosphorus (P), % 0 to 0.040
0 to 0.010
Silicon (Si), % 0 to 1.0
0.15 to 0.5
Sulfur (S), % 0 to 0.010
0 to 0.010
Vanadium (V), % 0
0.15 to 0.3
Residuals, % 0
0 to 0.5