MakeItFrom.com
Menu (ESC)

EN 1.4062 Stainless Steel vs. C443.0 Aluminum

EN 1.4062 stainless steel belongs to the iron alloys classification, while C443.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4062 stainless steel and the bottom bar is C443.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 23 to 34
9.0
Fatigue Strength, MPa 410 to 420
120
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 79
27
Shear Strength, MPa 510
130
Tensile Strength: Ultimate (UTS), MPa 770 to 800
230
Tensile Strength: Yield (Proof), MPa 530 to 600
100

Thermal Properties

Latent Heat of Fusion, J/g 290
470
Maximum Temperature: Mechanical, °C 1030
170
Melting Completion (Liquidus), °C 1430
630
Melting Onset (Solidus), °C 1380
600
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 15
140
Thermal Expansion, µm/m-K 13
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
37
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
120

Otherwise Unclassified Properties

Base Metal Price, % relative 12
9.5
Density, g/cm3 7.7
2.7
Embodied Carbon, kg CO2/kg material 2.6
7.9
Embodied Energy, MJ/kg 37
150
Embodied Water, L/kg 150
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170 to 230
17
Resilience: Unit (Modulus of Resilience), kJ/m3 690 to 910
70
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 28 to 29
24
Strength to Weight: Bending, points 24 to 25
31
Thermal Diffusivity, mm2/s 4.0
58
Thermal Shock Resistance, points 21 to 22
10

Alloy Composition

Aluminum (Al), % 0
89.6 to 95.5
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 21.5 to 24
0
Copper (Cu), % 0
0 to 0.6
Iron (Fe), % 69.3 to 77.3
0 to 2.0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 2.0
0 to 0.35
Molybdenum (Mo), % 0 to 0.45
0
Nickel (Ni), % 1.0 to 2.9
0 to 0.5
Nitrogen (N), % 0.16 to 0.28
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
4.5 to 6.0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.25