MakeItFrom.com
Menu (ESC)

EN 1.4062 Stainless Steel vs. EN 1.0488 Steel

Both EN 1.4062 stainless steel and EN 1.0488 steel are iron alloys. They have 75% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4062 stainless steel and the bottom bar is EN 1.0488 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 23 to 34
27
Fatigue Strength, MPa 410 to 420
210
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 79
73
Shear Strength, MPa 510
280
Tensile Strength: Ultimate (UTS), MPa 770 to 800
440
Tensile Strength: Yield (Proof), MPa 530 to 600
280

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 1030
400
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1380
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
49
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 12
2.3
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.6
1.5
Embodied Energy, MJ/kg 37
20
Embodied Water, L/kg 150
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170 to 230
100
Resilience: Unit (Modulus of Resilience), kJ/m3 690 to 910
200
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 28 to 29
15
Strength to Weight: Bending, points 24 to 25
16
Thermal Diffusivity, mm2/s 4.0
13
Thermal Shock Resistance, points 21 to 22
14

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.024
Carbon (C), % 0 to 0.030
0 to 0.16
Chromium (Cr), % 21.5 to 24
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 69.3 to 77.3
96.6 to 99.38
Manganese (Mn), % 0 to 2.0
0.6 to 1.5
Molybdenum (Mo), % 0 to 0.45
0 to 0.080
Nickel (Ni), % 1.0 to 2.9
0 to 0.5
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0.16 to 0.28
0 to 0.012
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.4
Sulfur (S), % 0 to 0.010
0 to 0.0080
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.050