MakeItFrom.com
Menu (ESC)

EN 1.4062 Stainless Steel vs. EN 1.8865 Steel

Both EN 1.4062 stainless steel and EN 1.8865 steel are iron alloys. They have 76% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4062 stainless steel and the bottom bar is EN 1.8865 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 23 to 34
19
Fatigue Strength, MPa 410 to 420
340
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 79
73
Shear Strength, MPa 510
410
Tensile Strength: Ultimate (UTS), MPa 770 to 800
660
Tensile Strength: Yield (Proof), MPa 530 to 600
500

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 1030
420
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1380
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
39
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 12
3.2
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.6
1.8
Embodied Energy, MJ/kg 37
24
Embodied Water, L/kg 150
52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170 to 230
120
Resilience: Unit (Modulus of Resilience), kJ/m3 690 to 910
670
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 28 to 29
23
Strength to Weight: Bending, points 24 to 25
21
Thermal Diffusivity, mm2/s 4.0
10
Thermal Shock Resistance, points 21 to 22
19

Alloy Composition

Boron (B), % 0
0 to 0.0050
Carbon (C), % 0 to 0.030
0 to 0.18
Chromium (Cr), % 21.5 to 24
0 to 1.0
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 69.3 to 77.3
93.6 to 100
Manganese (Mn), % 0 to 2.0
0 to 1.7
Molybdenum (Mo), % 0 to 0.45
0 to 0.7
Nickel (Ni), % 1.0 to 2.9
0 to 1.5
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0.16 to 0.28
0 to 0.015
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.6
Sulfur (S), % 0 to 0.010
0 to 0.0050
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0 to 0.080
Zirconium (Zr), % 0
0 to 0.15