MakeItFrom.com
Menu (ESC)

EN 1.4062 Stainless Steel vs. EN AC-46500 Aluminum

EN 1.4062 stainless steel belongs to the iron alloys classification, while EN AC-46500 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4062 stainless steel and the bottom bar is EN AC-46500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
74
Elongation at Break, % 23 to 34
1.0
Fatigue Strength, MPa 410 to 420
110
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 79
28
Tensile Strength: Ultimate (UTS), MPa 770 to 800
270
Tensile Strength: Yield (Proof), MPa 530 to 600
160

Thermal Properties

Latent Heat of Fusion, J/g 290
520
Maximum Temperature: Mechanical, °C 1030
180
Melting Completion (Liquidus), °C 1430
610
Melting Onset (Solidus), °C 1380
520
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 15
100
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
26
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
81

Otherwise Unclassified Properties

Base Metal Price, % relative 12
10
Density, g/cm3 7.7
2.9
Embodied Carbon, kg CO2/kg material 2.6
7.6
Embodied Energy, MJ/kg 37
140
Embodied Water, L/kg 150
1030

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170 to 230
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 690 to 910
170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
49
Strength to Weight: Axial, points 28 to 29
26
Strength to Weight: Bending, points 24 to 25
32
Thermal Diffusivity, mm2/s 4.0
41
Thermal Shock Resistance, points 21 to 22
12

Alloy Composition

Aluminum (Al), % 0
77.9 to 90
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 21.5 to 24
0 to 0.15
Copper (Cu), % 0
2.0 to 4.0
Iron (Fe), % 69.3 to 77.3
0 to 1.3
Lead (Pb), % 0
0 to 0.35
Magnesium (Mg), % 0
0.050 to 0.55
Manganese (Mn), % 0 to 2.0
0 to 0.55
Molybdenum (Mo), % 0 to 0.45
0
Nickel (Ni), % 1.0 to 2.9
0 to 0.55
Nitrogen (N), % 0.16 to 0.28
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
8.0 to 11
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 3.0
Residuals, % 0
0 to 0.25