MakeItFrom.com
Menu (ESC)

EN 1.4062 Stainless Steel vs. S32760 Stainless Steel

Both EN 1.4062 stainless steel and S32760 stainless steel are iron alloys. They have 88% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4062 stainless steel and the bottom bar is S32760 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 23 to 34
28
Fatigue Strength, MPa 410 to 420
450
Poisson's Ratio 0.27
0.27
Shear Modulus, GPa 79
80
Shear Strength, MPa 510
550
Tensile Strength: Ultimate (UTS), MPa 770 to 800
850
Tensile Strength: Yield (Proof), MPa 530 to 600
620

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 440
450
Maximum Temperature: Mechanical, °C 1030
1100
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1380
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 12
22
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.6
4.1
Embodied Energy, MJ/kg 37
57
Embodied Water, L/kg 150
180

Common Calculations

PREN (Pitting Resistance) 27
42
Resilience: Ultimate (Unit Rupture Work), MJ/m3 170 to 230
220
Resilience: Unit (Modulus of Resilience), kJ/m3 690 to 910
930
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 28 to 29
30
Strength to Weight: Bending, points 24 to 25
25
Thermal Diffusivity, mm2/s 4.0
4.0
Thermal Shock Resistance, points 21 to 22
23

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 21.5 to 24
24 to 26
Copper (Cu), % 0
0.5 to 1.0
Iron (Fe), % 69.3 to 77.3
57.6 to 65.8
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 0 to 0.45
3.0 to 4.0
Nickel (Ni), % 1.0 to 2.9
6.0 to 8.0
Nitrogen (N), % 0.16 to 0.28
0.2 to 0.3
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.010
Tungsten (W), % 0
0.5 to 1.0