MakeItFrom.com
Menu (ESC)

EN 1.4104 Stainless Steel vs. 1235 Aluminum

EN 1.4104 stainless steel belongs to the iron alloys classification, while 1235 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4104 stainless steel and the bottom bar is 1235 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 11 to 23
28 to 34
Fatigue Strength, MPa 230 to 310
23 to 58
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Shear Strength, MPa 400 to 450
52 to 56
Tensile Strength: Ultimate (UTS), MPa 630 to 750
80 to 84
Tensile Strength: Yield (Proof), MPa 350 to 560
23 to 57

Thermal Properties

Latent Heat of Fusion, J/g 280
400
Maximum Temperature: Mechanical, °C 860
170
Melting Completion (Liquidus), °C 1440
640
Melting Onset (Solidus), °C 1390
640
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 25
230
Thermal Expansion, µm/m-K 10
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
60
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
200

Otherwise Unclassified Properties

Base Metal Price, % relative 8.5
9.5
Density, g/cm3 7.7
2.7
Embodied Carbon, kg CO2/kg material 2.2
8.3
Embodied Energy, MJ/kg 30
160
Embodied Water, L/kg 120
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 77 to 120
17 to 25
Resilience: Unit (Modulus of Resilience), kJ/m3 310 to 800
3.8 to 24
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 23 to 27
8.2 to 8.6
Strength to Weight: Bending, points 21 to 24
15 to 16
Thermal Diffusivity, mm2/s 6.7
93
Thermal Shock Resistance, points 22 to 27
3.6 to 3.7

Alloy Composition

Aluminum (Al), % 0
99.35 to 100
Carbon (C), % 0.1 to 0.17
0
Chromium (Cr), % 15.5 to 17.5
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 78.8 to 84.1
0 to 0.65
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.5
0 to 0.050
Molybdenum (Mo), % 0.2 to 0.6
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.65
Sulfur (S), % 0.15 to 0.35
0
Titanium (Ti), % 0
0 to 0.060
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0
0 to 0.1