MakeItFrom.com
Menu (ESC)

EN 1.4104 Stainless Steel vs. EN 2.4668 Nickel

EN 1.4104 stainless steel belongs to the iron alloys classification, while EN 2.4668 nickel belongs to the nickel alloys. They have a modest 35% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4104 stainless steel and the bottom bar is EN 2.4668 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 11 to 23
14
Fatigue Strength, MPa 230 to 310
590
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
75
Shear Strength, MPa 400 to 450
840
Tensile Strength: Ultimate (UTS), MPa 630 to 750
1390
Tensile Strength: Yield (Proof), MPa 350 to 560
1160

Thermal Properties

Latent Heat of Fusion, J/g 280
310
Maximum Temperature: Mechanical, °C 860
980
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1390
1410
Specific Heat Capacity, J/kg-K 480
450
Thermal Conductivity, W/m-K 25
13
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 8.5
75
Density, g/cm3 7.7
8.3
Embodied Carbon, kg CO2/kg material 2.2
13
Embodied Energy, MJ/kg 30
190
Embodied Water, L/kg 120
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 77 to 120
180
Resilience: Unit (Modulus of Resilience), kJ/m3 310 to 800
3490
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 23 to 27
46
Strength to Weight: Bending, points 21 to 24
33
Thermal Diffusivity, mm2/s 6.7
3.5
Thermal Shock Resistance, points 22 to 27
40

Alloy Composition

Aluminum (Al), % 0
0.3 to 0.7
Boron (B), % 0
0.0020 to 0.0060
Carbon (C), % 0.1 to 0.17
0.020 to 0.080
Chromium (Cr), % 15.5 to 17.5
17 to 21
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 78.8 to 84.1
11.2 to 24.6
Manganese (Mn), % 0 to 1.5
0 to 0.35
Molybdenum (Mo), % 0.2 to 0.6
2.8 to 3.3
Nickel (Ni), % 0
50 to 55
Niobium (Nb), % 0
4.7 to 5.5
Phosphorus (P), % 0 to 0.040
0 to 0.015
Silicon (Si), % 0 to 1.0
0 to 0.35
Sulfur (S), % 0.15 to 0.35
0 to 0.015
Titanium (Ti), % 0
0.6 to 1.2